Students' allocation using fuzzy clustering algorithms and Fukuyama and Sugeno's fuzzy cluster validity index

Sani Susanto \dagger, Ernawati \ddagger \& Pandian Vasant*
Parahyangan Catholic University, Bandung, Indonesia \dagger
Atma Jaya University, Yogyakarta, Indonesia \ddagger
University Teknologi Petronas, Perak, Malaysia*

Abstract

Data Structure is a compulsory $4^{\text {th }}$ semester subject offered by the Department of Informatics at Atma Jaya University, Yogyakarta, Indonesia. Consider that there are 121 students enrolled in this subject, all of whom need to be allocated into classes. This fact raises three questions. Firstly, what is the appropriate number of classes? Secondly, how should those students be allocated into classes? Thirdly, which student belongs to which class? The answer to the second and the third questions for a given number of classes was formulated in a previous article by employing the fuzzy clustering concept, one of several tools in data mining. As a development to this prior article, the research presented by the authors in this current article endeavours to answer the first question by employing the Fukuyama and Sugeno’s fuzzy cluster validity index.

INTRODUCTION

Consider the following fact: 121 students enrolled in the Department of Informatics at the Atma Jaya University, Yogyakarta, Indonesia, are going to take the subject TF4376 (Data Structure), a compulsory $4^{\text {th }}$ semester unit. Those students must be allocated to, say, n classes. This fact raises three questions. Firstly, what is the appropriate value for n ? Secondly, should those 121 students be allocated into classes? Thirdly, which student belongs to which class? In fact, there are common answers to those questions. According to the University's rules, up to 60 students are allowed to be in a class; thus, two classes are needed. Based on students’ ID numbers, allocate the first 60 students to are assigned to class A and the remainder 61 students to class B.

However, is there any other more reasonable way to answer those three questions? The answer to the second and third question was given by Susanto, Suharto and Sukapto [6]. This was carried out by applying a data mining technique called fuzzy clustering or fuzzy c-means. This technique divides several items into several groups (also called classes or clusters), based on an items' characteristics or attributes.

The research presented in this article is a development of the previous article and tries to answer the first question [6]. The problem formulated by this question belongs to region of fuzzy cluster validity problems. Answering it requires a comparison to be carried out between the values of the fuzzy cluster validity index for several numbers of the clusters.

This article is organised as follows. The Approach and Methods section describes the approach, methods and concepts applied in order to solve the research questions formulated in the Introduction section. The Results section reports on the information obtained from the application of the approach, methods and the concept employed. In the Discussion section,
the authors discuss and interpret the results obtained. The Conclusion section presents the summary of the research results. For the readers' ease and convenience and due to space limitations some tables are placed in the Appendices.

APPROACH AND METHODS IN CLUSTERING

The process of distributing students to classes is called clustering, while the class obtained is called a cluster. Clustering of the 121 students for the subject TF4376 is based on students' mastery level of its prerequisite. In the case of TF4376, its prerequisite subjects are TF2474 (Algorithms and Programming) and TF3276 (Introduction to Data Structure). Students’ individual mastery levels of the prerequisites are based on the scores that students achieved. At the Atma Jaya University, students' grades are divided into 11 categories, ie from A (excellent) to E (fail), which corresponds to the score from 4 to 0 , as listed in Table 1.

Table 1: Grade and score.

Grade	Score
A	4.00
$\mathrm{~A}^{-}$	3.70
$\mathrm{~B}^{+}$	3.30
$\mathrm{~B}^{-}$	3.00
$\mathrm{~B}^{-}$	2.70
C^{+}	2.30
C	2.00
C^{-}	1.70
D^{+}	1.30
D	1.00
E	0.00

Scores provide the input information for clustering. Successful clustering results in clusters of students with similar mastery levels of prerequisite subjects. Students' scores of these prerequisites are listed in Table 2 (see Appendices) as
attributes. The clustering process is based on these attributes. From Table 2, the attribute of the $1^{\text {st }}$ student is represented by the following vector:

$$
\begin{equation*}
\mathbf{x}_{1}=\binom{3.00}{2.00} \tag{1}
\end{equation*}
$$

This means that this student attained B and C for TF2474 and TF3276, respectively. The fuzzy clustering technique allocates these 121 attributes vectors, $\mathrm{x}_{1}, \ldots, \mathrm{x}_{121}$, into c clusters. This technique is called fuzzy clustering, since it gives the degree of membership to each cluster for each attribute vector. This means that the fuzzy clustering technique gives a suitability level to each student to belong to each of the c clusters. A student who has the highest degree of membership to a cluster is assigned to be a member of this cluster. Once the fuzzy clustering algorithm receives an input in terms of the attribute vectors, it gives two kinds of vectors as its outputs. The first vector, called the degree of membership vector, is:

$$
\mathrm{U}_{\mathrm{i}}=\left(\begin{array}{c}
u_{l i} \tag{2}\\
\vdots \\
u_{k i} \\
\vdots \\
u_{I 2 l, i}
\end{array}\right), i=1,2, \ldots, c
$$

where U_{ki} represents the degree of membership of the $k^{\text {th }}$ student to belong to cluster i. The second vector, called the cluster centre vector, is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=\binom{\mathrm{v}_{1 \mathrm{i}}}{\mathrm{v}_{2 \mathrm{i}}}, i=1,2, \ldots, c \tag{3}
\end{equation*}
$$

in which v_{ji} represents the (weighted) average of students' scores achieved by students belong to cluster i for the $j^{\text {th }}$ prerequisite for the subject TF4376. The value of each component in vector v_{i} represents the student's mastery level of the prerequisites in each cluster.

The component value of vectors U_{i} and v_{i} are obtained by solving the fuzzy clustering problem, which is basically a constrained optimisation problem in the form as follows:

$$
\begin{equation*}
\min \mathrm{J}_{2}(\mathbf{U}, \mathbf{v})=\sum_{\mathrm{i}=1}^{\mathrm{c}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{u}_{\mathrm{ki}}\right)^{2}\left\|\mathbf{x}_{\mathrm{k}}-\mathbf{v}_{\mathrm{i}}\right\|^{2} \tag{4}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& \sum_{i=1}^{c} \mathrm{u}_{\mathrm{ki}}=1, \forall \mathrm{k}=1,2, \ldots, \mathrm{n} \tag{5}\\
& \sum_{k=1}^{n} \mathrm{u}_{\mathrm{ki}}>0, \forall \mathrm{i}=1,2, \ldots, \mathrm{c} \tag{6}
\end{align*}
$$

The descriptions of the notation, equation and inequality are as follows:

- The variable n, in this case $\mathrm{n}=121$, represents the number of students taking the subject TF4376;
- The variable c represents the number of clusters, of which the value is determined by comparing the values of fuzzy cluster validity indices for several number of clusters;
- The matrix $\mathrm{U}=\left(\mathrm{u}_{\mathrm{k}}\right)_{\mathrm{nxc}}$ consists of n rows and c columns, of which the elements represent the degree of membership of the $k^{\text {th }}$ student to undertake the subject TF4376 in the cluster i;
- The matrix $\mathrm{v}=\left(\mathrm{v}_{\mathrm{j} \mathrm{i}}\right)_{\mathrm{mxc}}$ consists of m rows and c columns, of which the element represents the (weighted) average of
students' score achieved by students belonging to the cluster i for the $j^{\text {th }}$ prerequisite for the subject TF4376;
- The equation (5) requires that the total degree of membership of each student to belong to the available c clusters is 1 or 100%;
- The inequality (6) requires that of all clusters, there must be at least one that a student can belong to.

In extreme conditions, the value of the functional $J_{2}(\mathrm{U}, \mathrm{v})$ in equation (4) is zero, which indicates that the clusters obtained are ideal, since they consist of students with the same mastery level of the prerequisites. The less the value of $\mathrm{J}_{2}(\mathrm{U}, \mathrm{v})$, the better that the clustering process is. Some researchers proposed fuzzy clustering algorithms to solve the optimisation problem ([1-5]). For example, the algorithm presented below was proposed by Bezdek [2].

Step 1: Fix c, $2 \leq c<\sqrt{\mathrm{n}}$; choose any $\xi>0$ and any norm $\|\|$ on R^{m}; initialise $\mathrm{U}^{(0)}$; set $l=0$.

Step 2: Calculate the c fuzzy cluster centres $\left\{\mathrm{v}_{\mathrm{i}}^{(l)}\right\}$, where

$$
\begin{equation*}
\mathrm{v}_{\mathrm{ji}}^{(l)}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{u}_{\mathrm{ki}}^{(l)}\right)^{2} \mathrm{x}_{\mathrm{jk}}}{\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{u}_{\mathrm{ki}}^{(l)}\right)^{2}} ; \mathrm{i}=1, \ldots, \mathrm{c} ; \mathrm{j}=1,2 \tag{7}
\end{equation*}
$$

Step 3: $l \leftarrow l+1$; calculate
$\mathrm{u}_{\mathrm{ki}}^{(l)}=\left\{\begin{array}{l}\frac{1}{\left[\sum_{\mathrm{m}=1}^{\mathrm{c}}\left(\frac{\mathrm{d}_{\mathrm{k}}}{\mathrm{d}_{\mathrm{km}}}\right)^{2}\right]}, \\ 0, \\ \quad \text { if } \mathrm{I}_{\mathrm{k}}=\varnothing \\ \frac{1}{\left|\mathrm{I}_{\mathrm{k}}\right|}, \quad \forall \mathrm{i} \in \mathrm{I}_{\mathrm{k}} \text { if } \mathrm{I}_{\mathrm{k}} \neq \varnothing \\ \mathrm{I}_{\mathrm{k}} \neq \varnothing\end{array}\right.$
where $\mathrm{I}_{\mathrm{k}}=\left\{\mathrm{i} \mid 1 \leq \mathrm{i} \leq \mathrm{c} ; \mathrm{d}_{\mathrm{ki}}=\left\|\mathbf{x}_{\mathrm{k}}-\mathbf{v}_{\mathrm{i}}\right\|=0\right\}, \mathrm{I}_{\mathrm{k}}^{\mathrm{c}}=\{1,2, \ldots, \mathrm{c}\}-\mathrm{I}_{\mathrm{k}} \quad$ and

$$
\left|I_{k}\right| \text { is the number of element(s) in } I_{k} \text {. }
$$

Step 4: If $\left\|U^{(l+1)}-U^{(l)}\right\|<\xi$ then stop, else go to Step 2.

APPROACH AND METHODS IN CLUSTER VALIDITY

In the case discussed, the fuzzy clustering algorithm can be applied to allocate the 121 students from 2 to $\mathrm{n}=121$ clusters. However, Wu and Yang suggested to cluster those students to $2, \ldots, \sqrt{n}=\sqrt{121}=11$ clusters [7]. So what is the most appropriate number of clusters? This question involves finding the optimal number of clusters, which belongs to the cluster validity area. In this research, the validity function proposed by Fukuyama and Sugeno, called FS, is employed [7]. This function is defined as follows:

$$
\begin{equation*}
\mathrm{FS}(\mathrm{c})=\sum_{\mathrm{i}=1}^{\mathrm{c}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ki}}^{2}\left\|\mathbf{x}_{\mathrm{k}}-\mathbf{v}_{\mathrm{i}}\right\|^{2}+\sum_{\mathrm{i}=1}^{\mathrm{c}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{u}_{\mathrm{ki}}^{2}\left\|\mathbf{v}_{\mathrm{i}}-\overline{\mathbf{v}}\right\|^{2} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{v}}=\frac{1}{\mathrm{c}} \sum_{\mathrm{i}=1}^{\mathrm{c}} \mathbf{v}_{\mathrm{i}} \tag{10}
\end{equation*}
$$

The best number of clusters, c^{*}, is found by solving $\max _{2 \leq c \leq \sqrt{n}} \mathrm{FS}$ (c).

RESULTS

Due to space limitations, the application of the fuzzy clustering algorithm (with the help of MATLAB 6.5 software) is illustrated only for the case of allocating 121 students to $c=5$ clusters.

The first vector, called the degree of membership vector, obtained as a result of this algorithm, is $U_{i}(i=1,2, \ldots, 121)$, as displayed in Table 3 (see Appendices). In this example, the values in the $1^{\text {st }}$ row of this table are interpreted thusly:

$$
u_{11}=0.0017 ; u_{12}=0.9927 ; u_{13}=0.0009 ; u_{14}=0.0015 ; u_{15}=0.0033
$$

From those values, the $1^{\text {st }}$ student is most appropriate to be in cluster 2, since he/she has the highest degree of membership to this cluster. By the same interpretation, the following students’ allocation have been obtained using Table 3:

- The $1^{\text {st }}$ cluster consists of the following student numbers: $6,10,17,18,21,22,24-29,31-34,36,37,40,42-44,46-49,51-$ $56,58-62,72,73,82,83,85,87,91,94,98,103,105,108,110-$ 112, 114, 115 and 118;
- The $2^{\text {nd }}$ cluster consists of student numbers: $1,2,39,41,45$, $65,71,88,95-97,101,109,116$ and 120 ;
- The $3^{\text {rd }}$ cluster consists of student numbers: $4,7-9,11,15$, 16,35 and 100 ;
- The $4^{\text {th }}$ cluster consists of student numbers: $38,67,74,84$, 90, 106, 113 and 121;
- The $5^{\text {th }}$ cluster consists of student numbers: $3,5,12-14,19$, 20, 23, 30, 50, 57, 63, 64, 66, 68-70, 75, 77, 79-81, 86, 89, 92, $93,99,102,104,107,117$ and 119.

The complete allocation for $c=1,2, \ldots, \sqrt{121}=11$ clusters are listed in Table 4 (see Appendices).

The second vector obtained, called the cluster centre vector, is $\mathrm{v}_{\mathrm{i}}(\mathrm{i}=1, \ldots, 5)$ as displayed in Table 5.

Table 5: The cluster centre vectors for the five clusters.

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}
2.0644	3.0123	1.1603	2.6551	2.0452
1.0140	1.9454	1.9478	3.4230	1.8034

As an example, the interpretations of the values in the $1^{\text {st }}$ column of Table 5 are as follows:

- $\quad v_{11}=2.0644$, the (weighted) average of the mastery level of the first prerequisite subject (TF2474);
- $\quad v_{21}=1.0140$, the (weighted) average of the mastery level of the second prerequisite subject (TF 3276).

Calculating the value of the function FS in (9) is shown in Table 6. Since the maximum number of the value of the function FS corresponds to $\mathrm{c}=5$, then the optimal number of clusters is five. Thus, it is suggested that the 121 students
enrolled in TF4376 (Data Structure) be clustered into five classes.

DISCUSSION

The fuzzy clustering algorithm can be successfully utilised to allocate the 121 students into clusters. The Fukuyama and Sugeno's fuzzy cluster validity index has succeeded in determining the optimal number of clusters. However, the following points must be considered when those two concepts are to be implemented in allocating students into clusters:

- Firstly, based on the results displayed in Table 4 (see Appendices), there is no guarantee that each of the clusters obtained will contain approximately the same number of students for a given number of clusters;
- Secondly, based on the results listed in Table 5, the Fukuyama and Sugeno's index, besides being able to determine the optimal number of clusters, gives options to determine the next optimal number of clusters. This kind of option is beneficial in the case where the optimal number clusters suggested by this index is considered uneconomical.

The correlation coefficient between the values in the first and the second row of Table 5 is 0.3349 . This low value indicates that there is no significant relationship between students' scores of the two prerequisites of the subject TF4376 (Data Structure), ie TF2474 (Algorithms and Programming) and TF 3276 (Introduction to Data Structure).

CONCLUSION

If there is a need for the clusters generated by the fuzzy clustering algorithm to contain approximately the same number of students, then this algorithm needs to be modified. Such a modification can be accomplished by performing a minor modification to the stopping rule of Step 4 of Bezdek's algorithm.

ACKNOWLEDGEMENTS

The first author would like to extend his sincere thanks to Dr B.H. Bisowarno (Dean of the Faculty of Industrial Technology), Mr D. Siswanto (Vice Dean for Financial and Administrative Affairs) and Dr B.K. Ane (Head of the Department of Industrial Engineering), all from Parahyangan Catholic University, for their administrative help and moral support in publishing this article.

REFERENCES

1. Al-Sultan, K. and Selim, S.Z., A global algorithm for the fuzzy clustering problem. Pattern Recognition, 26, 9, 1357-1361 (1993).
2. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press (1981).
3. Kamel, M.S. and Selim, SZ., New algorithms for solving the fuzzy clustering algorithm. Pattern Recognition, 27, 3, 421-428 (1994).
4. Selim, S.Z. and Al-Sultan, K., A simulated annealing algorithm for the clustering problem. Pattern Recognition, 24, 10, 1003-1008 (1991).
5. Susanto, S., Kennedy, R.D. and Price, J.W.H., A preliminary study of a clustering and assignment problembased cell formation problem. Proc. Inter. Conf. on Mfg. Automation, 1, 95-104 (1997).

6．Susanto，S．，Suharto，P．and Sukapto，P．，Using the fuzzy clustering algorithm for the allocation of students．World Trans．on Engng．and Technology Educ．，1，2，245－248（2002）．

7．Wu，K－L．and Yang，M－S．，A cluster validity index for fuzzy clustering．Pattern Recognition，Letters，26，9，1275－ 1291 （2005）．

APPENDICES

Table 2：Attributes of 121 students based on score achieved for the prerequisite subjects of TF4376 Data Structure．

$\begin{aligned} & \text { 蓸 } \\ & \text { 何 } \end{aligned}$	Score for Programming Algorithm	Score for Introduction to Data Structure	$\begin{aligned} & \text { 蔦 } \\ & \text { U } \\ & \text { in } \end{aligned}$	Score for Programming Algorithm	Score for Introduction to Data Structure	\＃ \＃ 苟	Score for Programming Algorithm	Score for Introduction to Data Structure
1	3.00	2.00	42	2.70	1.00	83	3.00	1.00
2	3.00	2.00	43	2.70	1.00	84	3.70	4.00
3	2.00	2.00	44	2.30	1.00	85	2.00	1.00
4	1.00	3.00	45	3.00	2.00	86	2.00	2.30
5	2.00	2.30	46	2.30	1.00	87	2.00	1.00
6	2.00	1.00	47	2.70	1.00	88	2.70	2.00
7	1.00	2.70	48	1.70	1.00	89	2.30	1.70
8	1.30	2.00	49	1.70	1.00	90	2.70	2.70
9	1.30	2.70	50	2.00	2.30	91	1.70	1.00
10	2.00	1.30	51	2.00	1.00	92	2.00	2.00
11	1.00	2.00	52	1.30	1.00	93	1.70	2.00
12	2.30	2.00	53	1.70	1.00	94	2.70	1.00
13	1.70	1.70	54	1.70	1.00	95	3.00	1.70
14	2.30	1.70	55	1.70	1.00	96	3.30	1.70
15	1.00	1.70	56	2.00	1.00	97	2.70	1.70
16	1.00	1.70	57	2.00	1.70	98	2.00	1.00
17	1.30	1.00	58	2.30	1.00	99	2.00	1.70
18	2.00	1.00	59	1.70	1.00	100	1.00	1.70
19	2.00	2.00	60	3.00	1.00	101	3.00	2.70
20	2.00	1.70	61	1.70	1.00	102	2.30	2.00
21	2.30	1.00	62	2.30	1.00	103	1.70	1.00
22	2.30	1.00	63	2.30	1.70	104	1.70	1.70
23	2.30	1.70	64	1.70	1.70	105	1.70	1.00
24	2.30	1.00	65	3.00	2.30	106	2.30	3.30
25	2.30	1.00	66	2.00	1.70	107	2.00	2.00
26	2.30	1.00	67	3.70	3.30	108	2.00	1.00
27	2.00	1.00	68	1.70	1.70	109	3.30	2.30
28	2.30	1.00	69	2.00	2.00	110	1.70	1.00
29	2.00	1.00	70	2.00	1.70	111	2.30	1.00
30	2.00	1.70	71	3.00	1.70	112	1.70	1.00
31	2.30	1.00	72	2.70	1.00	113	2.30	3.70
32	2.30	1.00	73	1.70	1.00	114	2.70	1.00
33	2.00	1.00	74	3.00	3.70	115	2.00	1.00
34	2.30	1.00	75	2.30	1.70	116	3.30	2.00
35	1.00	2.00	76	1.70	1.30	117	2.30	1.70
36	2.30	1.00	77	1.70	1.70	118	2.00	1.00
37	2.00	1.00	78	1.70	1.00	119	2.30	1.70
38	2.00	3.00	79	2.00	2.00	120	3.70	1.00
39	3.00	2.00	80	1.70	1.70	121	1.70	3.30
40	2.30	1.00	81	2.00	1.70			
41	3.00	2.30	82	2.00	1.00			

Table 3: The students' degree of memberships to five clusters.
Table 3 (continuation).

	Degree of Membership to					Student	Degree of Membership to				
Student	Cluster 1	$\begin{gathered} \text { Cluster } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Cluster } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cluster } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cluster } \\ 5 \end{gathered}$		Cluster 1	Cluster 2	$\begin{gathered} \text { Cluster } \\ 3 \end{gathered}$	$\begin{gathered} \text { Cluster } \\ 4 \end{gathered}$	$\begin{gathered} \text { Cluster } \\ 5 \end{gathered}$
1	0.0017	0.9927	0.0009	0.0015	0.0033	61	0.7374	0.0375	0.0824	0.0145	0.1282
2	0.0017	0.9927	0.0009	0.0015	0.0033	62	0.8675	0.0345	0.0220	0.0081	0.0680
3	0.0361	0.0343	0.0497	0.0143	0.8656	63	0.1059	0.0982	0.0410	0.0180	0.7369
4	0.0979	0.0963	0.4387	0.1703	0.1969	64	0.1273	0.0431	0.2179	0.0198	0.5918
5	0.0827	0.1192	0.1654	0.0811	0.5516	65	0.0387	0.7779	0.0279	0.0710	0.0845
6	0.9878	0.0022	0.0027	0.0007	0.0066	66	0.0253	0.0111	0.0157	0.0035	0.9443
7	0.0841	0.0724	0.5649	0.1024	0.1762	67	0.0709	0.2428	0.0677	0.5061	0.1125
8	0.0134	0.0071	0.9389	0.0054	0.0351	68	0.1273	0.0431	0.2179	0.0198	0.5918
9	0.0847	0.0829	0.4958	0.1230	0.2136	69	0.0361	0.0343	0.0497	0.0143	0.8656
10	0.6712	0.0400	0.0513	0.0117	0.2258	70	0.0253	0.0111	0.0157	0.0035	0.9443
11	0.0128	0.0067	0.9509	0.0057	0.0239	71	0.0391	0.8716	0.0153	0.0170	0.0570
12	0.0704	0.1418	0.0556	0.0336	0.6986	72	0.5060	0.2063	0.0626	0.0348	0.1903
13	0.1273	0.0431	0.2179	0.0198	0.5918	73	0.7374	0.0375	0.0824	0.0145	0.1282
14	0.1059	0.0982	0.0410	0.0180	0.7369	74	0.0208	0.0547	0.0261	0.8610	0.0374
15	0.0464	0.0181	0.8549	0.0130	0.0675	75	0.1059	0.0982	0.0410	0.0180	0.7369
16	0.0464	0.0181	0.8549	0.0130	0.0675	76	0.4956	0.0497	0.1496	0.0196	0.2854
17	0.4251	0.0650	0.2707	0.0322	0.2069	77	0.1273	0.0431	0.2179	0.0198	0.5918
18	0.9878	0.0022	0.0027	0.0007	0.0066	78	0.7374	0.0375	0.0824	0.0145	0.1282
19	0.0361	0.0343	0.0497	0.0143	0.8656	79	0.0361	0.0343	0.0497	0.0143	0.8656
20	0.0253	0.0111	0.0157	0.0035	0.9443	80	0.1273	0.0431	0.2179	0.0198	0.5918
21	0.8675	0.0345	0.0220	0.0081	0.0680	81	0.0253	0.0111	0.0157	0.0035	0.9443
22	0.8675	0.0345	0.0220	0.0081	0.0680	82	0.9878	0.0022	0.0027	0.0007	0.0066
23	0.1059	0.0982	0.0410	0.0180	0.7369	83	0.3458	0.3386	0.0707	0.0505	0.1944
24	0.8675	0.0345	0.0220	0.0081	0.0680	84	0.0703	0.1736	0.0764	0.5719	0.1077
25	0.8675	0.0345	0.0220	0.0081	0.0680	85	0.9878	0.0022	0.0027	0.0007	0.0066
26	0.8675	0.0345	0.0220	0.0081	0.0680	86	0.0827	0.1192	0.1654	0.0811	0.5516
27	0.9878	0.0022	0.0027	0.0007	0.0066	87	0.9878	0.0022	0.0027	0.0007	0.0066
28	0.8675	0.0345	0.0220	0.0081	0.0680	88	0.0529	0.7247	0.0307	0.0359	0.1558
29	0.9878	0.0022	0.0027	0.0007	0.0066	89	0.1059	0.0982	0.0410	0.0180	0.7369
30	0.0253	0.0111	0.0157	0.0035	0.9443	90	0.0633	0.3082	0.0700	0.3917	0.1668
31	0.8675	0.0345	0.0220	0.0081	0.0680	91	0.7374	0.0375	0.0824	0.0145	0.1282
32	0.8675	0.0345	0.0220	0.0081	0.0680	92	0.0361	0.0343	0.0497	0.0143	0.8656
33	0.9878	0.0022	0.0027	0.0007	0.0066	93	0.0782	0.0501	0.2941	0.0294	0.5481
34	0.8675	0.0345	0.0220	0.0081	0.0680	94	0.5060	0.2063	0.0626	0.0348	0.1903
35	0.0128	0.0067	0.9509	0.0057	0.0239	95	0.0391	0.8716	0.0153	0.0170	0.0570
36	0.8675	0.0345	0.0220	0.0081	0.0680	96	0.0580	0.8098	0.0250	0.0342	0.0730
37	0.9878	0.0022	0.0027	0.0007	0.0066	97	0.1088	0.6034	0.0391	0.0320	0.2166
38	0.0701	0.1294	0.1526	0.4549	0.1929	98	0.9878	0.0022	0.0027	0.0007	0.0066
39	0.0017	0.9927	0.0009	0.0015	0.0033	99	0.0253	0.0111	0.0157	0.0035	0.9443
40	0.8675	0.0345	0.0220	0.0081	0.0680	100	0.0464	0.0181	0.8549	0.0130	0.0675
41	0.0387	0.7779	0.0279	0.0710	0.0845	101	0.0609	0.3973	0.0573	0.3526	0.1319
42	0.5060	0.2063	0.0626	0.0348	0.1903	102	0.0704	0.1418	0.0556	0.0336	0.6986
43	0.5060	0.2063	0.0626	0.0348	0.1903	103	0.7374	0.0375	0.0824	0.0145	0.1282
44	0.8675	0.0345	0.0220	0.0081	0.0680	104	0.1273	0.0431	0.2179	0.0198	0.5918
45	0.0017	0.9927	0.0009	0.0015	0.0033	105	0.7374	0.0375	0.0824	0.0145	0.1282
46	0.8675	0.0345	0.0220	0.0081	0.0680	106	0.0224	0.0505	0.0378	0.8379	0.0513
47	0.5060	0.2063	0.0626	0.0348	0.1903	107	0.0361	0.0343	0.0497	0.0143	0.8656
48	0.7374	0.0375	0.0824	0.0145	0.1282	108	0.9878	0.0022	0.0027	0.0007	0.0066
49	0.7374	0.0375	0.0824	0.0145	0.1282	109	0.0486	0.7414	0.0329	0.0922	0.0849
50	0.0827	0.1192	0.1654	0.0811	0.5516	110	0.7374	0.0375	0.0824	0.0145	0.1282
51	0.9878	0.0022	0.0027	0.0007	0.0066	111	0.8675	0.0345	0.0220	0.0081	0.0680
52	0.4251	0.0650	0.2707	0.0322	0.2069	112	0.7374	0.0375	0.0824	0.0145	0.1282
53	0.7374	0.0375	0.0824	0.0145	0.1282	113	0.0235	0.0477	0.0391	0.8430	0.0467
54	0.7374	0.0375	0.0824	0.0145	0.1282	114	0.5060	0.2063	0.0626	0.0348	0.1903
55	0.7374	0.0375	0.0824	0.0145	0.1282	115	0.9878	0.0022	0.0027	0.0007	0.0066
56	0.9878	0.0022	0.0027	0.0007	0.0066	116	0.0301	0.8762	0.0164	0.0308	0.0466
57	0.0253	0.0111	0.0157	0.0035	0.9443	117	0.1059	0.0982	0.0410	0.0180	0.7369
58	0.8675	0.0345	0.0220	0.0081	0.0680	118	0.9878	0.0022	0.0027	0.0007	0.0066
59	0.7374	0.0375	0.0824	0.0145	0.1282	119	0.1059	0.0982	0.0410	0.0180	0.7369
60	0.3458	0.3386	0.0707	0.0505	0.1944	120	0.2224	0.4353	0.0810	0.0855	0.1758
					inued	121	0.0764	0.1151	0.1932	0.4416	0.1736

Table 4: The results from clustering 121 students into $2, \ldots, 11$ clusters.

No. of Clusters	Cluster Number										
	1	2	3	4	5	6	7	8	9	10	11
11	$\begin{gathered} \hline 42-43476072 \\ 8394114120 \end{gathered}$	$\begin{array}{\|c} \hline 21-2224-2628 \\ 31-32343640 \\ 44465862 \\ 111 \end{array}$	$\begin{array}{\|c} \hline 1-239414565 \\ 71889095-96 \\ 101109116 \end{array}$	5385086106	677484113	$\begin{array}{\|c\|} \hline 319-203057 \\ 6669-707981 \\ 9299107 \end{array}$	479121	$8111315-$ 16356468 778093100 104	$1748-4952-$ 55596173 767891 103105110 112	121423 637589 97102 117119	$\begin{array}{\|c\|} \hline 6101827 \\ 293337 \\ 515682 \\ 858798 \\ 108115 \\ 118 \\ \hline \end{array}$
10	$\begin{gathered} 122394145 \\ 65717273 \\ 7475889596 \\ 109116120 \end{gathered}$	678490101	$\begin{gathered} 319697992 \\ 107 \end{gathered}$	4-5 795086	$\begin{gathered} 61017-1827 \\ 29333748-49 \\ 51-56596173 \\ 7678828587 \\ 9198103105 \\ 108110112 \\ 115118 \end{gathered}$	$\begin{gathered} 2030576670 \\ 8199 \end{gathered}$	$\begin{gathered} 3874106 \\ 113121 \end{gathered}$	$\begin{gathered} \hline 12142363 \\ 758997102 \\ 117119 \end{gathered}$	$\begin{gathered} 8111315 \\ 16356468 \\ 778093 \\ 100104 \end{gathered}$	$\begin{gathered} 212224- \\ 262831- \\ 323436 \\ 4042-44 \\ 46-4758 \\ 606272 \\ 8394111 \\ 114 \\ \hline \end{gathered}$	
9	$\begin{gathered} 7-91115-16 \\ 35100 \end{gathered}$	1239414565 $71889095-97$ 101109116	$6101821-22$ $24-2931-34$ $36-37404446$ 5156586282 858798108 111115118	677484	$\begin{gathered} 438106113 \\ 121 \end{gathered}$	$\begin{gathered} 3512195069 \\ 798692-93 \\ 102107 \end{gathered}$	$\begin{array}{\|c\|} \hline 13-1420 \\ 233057 \\ 63-6466 \\ 687075 \\ 7780-81 \\ 8999104 \\ 117119 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 42434760 \\ 728394114 \\ 120 \end{array}$	$1748-4952-$ 55596173 767891 103105110 112		
8	1214202330 5763667075 81899799 102117119	$\begin{gathered} 438106113 \\ 121 \end{gathered}$	$21-2224-26$ $2831-323436$ $4042-4446-47$ 5860627283 94111114	$\begin{gathered} 7-91115-16 \\ 35100 \end{gathered}$	$1-2394145$ $6571889095-$ 96101109116 120	677484	$\begin{gathered} 351319 \\ 506468- \\ 697779- \\ 808692- \\ 93104 \\ 107 \end{gathered}$	 $61017-18$ 27293337 $48-4951-56$ 59617376 78828587 9198103 105108110 112115118			
7	$\begin{gathered} 677484106 \\ 113 \end{gathered}$	$\begin{array}{\|c} 3512193850 \\ 69798692-93 \\ 102107121 \end{array}$	$\begin{array}{\|c} \hline 1-239414565 \\ 71889095-96 \\ 109116120 \end{array}$	$\begin{gathered} 1320305764 \\ 66687076-77 \\ 80-8199104 \end{gathered}$	$\begin{gathered} 61017-1821- \\ 2224-2931-34 \\ 36-374042-44 \\ 46-4951-56 \\ 58-6272-7378 \\ 82-83858791 \\ 9498103105 \\ 108110-112 \\ 14-115118 \\ \hline \end{gathered}$	$\begin{gathered} 1423637589 \\ 97117119 \end{gathered}$	$\begin{gathered} 47-911 \\ 15-1635 \\ 100 \end{gathered}$				
6	$\begin{gathered} 1214236063 \\ 75838997 \\ 102117119 \end{gathered}$	$251319-2030$ $5057646668-$ $707779-8186$ $92-9399104$ 107	$\begin{array}{\|c} \hline 1-239414565 \\ 71889095-96 \\ 101109116 \\ 120 \end{array}$	$\begin{gathered} 38677484 \\ 106121 \end{gathered}$	$\begin{gathered} 47-9111516 \\ 35100 \end{gathered}$	$61017-1821-$ $2224-2931-34$ $36-374042-44$ $46-4951-56$ $58-5961-62$ $72-73767882$ 8587919498 103105108 $110-112114-$ 115118					
5	610171821 $2224-2931-34$ $36374042-44$ $46-4951-56$ $58-6272-7382$ 8385879194 98103105108 $110-112114$ 115118	12394145 $65718895-97$ 101109116 120	$\begin{aligned} & 47-9111516 \\ & 35100 \end{aligned}$	$\begin{aligned} & \hline 38677484 \\ & 90106113121 \end{aligned}$	$3512-1419$ 2023305057 $63646668-70$ $757779-8186$ 89929399 102104107 117119						
4	$\begin{gathered} \hline 611017-1827 \\ 29333748-49 \\ 51-56596173 \\ 7678828587 \\ 9198103105 \\ 108110112 \\ 115 \end{gathered}$	$21-2224-2628$ $31-32343640$ $42-4446-4758$ 6062728394 97111114120	$3-57-911-16$ $19-20233035$ $38505763-64$ $6668-707577$ $79-818689$ $92-9399-100$ 102104107 117119121	12394145 6567717484 $889095-96$ 101106109 113116							
3	$\begin{gathered} 1239414565 \\ 6771748488 \\ 9095-97101 \\ 106109113 \\ 116120 \end{gathered}$	$610171821-$ $2224-2931-34$ $36-374042-44$ $46-4951-56$ $58-6272-7376$ $7882-838587$ 919498103 $105108110-$ $112114-115$ 118 6	$3-57-911-16$ $19-20233035$ $38505763-64$ $6668-7075-77$ $79-818689$ $92-9399-100$ 102104107 117119121								
2	$1-57-91214$ 1923383941 4550636567 $697174-75$ $79848688-90$ $929395-97$ $101-102106-$ 107109113 $116-112119$ 121	$610-11115-18$ $20-2224-3740$ $42-4446-49$ $51-62646668$ $7072-7376-78$ $80-83858791$ $9498-100103-$ $105108110-$ $12114-115$ 118120									

